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Abstract—In this paper a macroscopic elastic model is derived from a microscopic Hertz—Mindlin
elastic contact law using an homogenisation technique. The results obtained in the case of an initially
isotropic granular medium submitted to an isotropic stress state are first presented. The influence
of the static and kinematic internal variables defined in the homogenisation approach is then
discussed. Extensions to the cases of an isotropic granular medium submitted to an anisotropic
stress state and of an anisotropic medium loaded isotropically are analysed and discussed. As often
as possible, comparisons with experiments or numerical simulations are considered. Copyright
© 1996 Elsevier Science Ltd.

1. HOMOGENIZATION TECHNIQUE

The behaviour of granular materials is complex, even the reversible part is not at present
clearly established. The reason of this complex behaviour lies firstly in the non-linear local
behaviour at the contact point and secondly in the complex evolution of the structure, even
at a very low loading level (in particular by creation and loss of contact). The only way to
take into account the local complex phenomena is to use an homogenisation technique to
define the global behaviour from local phenomena. Such techniques have been used by
different authors in previous studies (Koenders, 1987 ; Walton, 1987 ; Sidoroff ez al., 1992;
Chang et al., 1994 ; Cambou et al., 1995) who have proposed a way which seems to allow
homogenisation to be achieved in realistic terms.

The himits of applicability of the proposed analysis are those of the homogenisation
theory. The material should present a sufficient homogenity ; in particular the behaviour of
materials with local instabilities (on singular points or surfaces) cannot reasonably be
described through the considered approach.

The global variables are the stress and strain tensors ¢, and ¢; and the following local
variables are considered (Cambou and Sidoroff, 1985):

Contact forces: F,.

Relative displacements of contact points between particles: U,

These variables are very complex stochastic ones for which a first approximation description
is proposed considering the mean values defined in a solid angle dQ for each contact
orientation n (Fig. 1) : F(n), U(n).

sl

Fig. 1. Definition of the solid angle for a given contact orientation n.
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The considered medium is composed of spherical particles in a non-regular array
whose average diameter is D. A measure of the geometry arrangement is defined by the
contact distribution P(n) which satisfies :

fﬁ Pm)dQ = 1. 1)
Unit Sphere
For an isotropic medium :

1
P(n) = 4. 2)

The local variables which are considered in the homogenisation technique are (Cambou et
al., 1995):

4nND
3

Static variable : f(n) = P(m)F(n) (3)

_ 3
Kinematic variable: wu(n) = U(n) 1D 4)

where D = mean diameter of particles, and N = number of contacts per unit volume.

According to these definitions, f(n) is homogenous to a stress and u(n) to a strain.
Both the medium fabric [through P(n)] and the force distribution [through F(n)] intervene
in the static variable f(n). The homogenisation technique requires the definition of different
operators (localisation and averaging) described in Table 1.

Table 1. Definition of the different operators of localisation and averaging

MACROSCOPIC SCALE

(
Global constitutive law

gij V O,

N\

Localization Averaging ocalizatj Averaging

Kinenjatic Analysis Statif Anglysis

\ Y
Local contact law
u i W F :

1

Relative displacement Contact Force
at contact point

MICROSCOPIC SCALE
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Different hypotheses can be considered for the localisation and averaging operators.
Different homogenisation processes have previously been analysed (Cambou et al., 1995)
and compared. It can be noted that an homogenisation process is defined by a localisation
and an averaging operator. Three approaches are considered here:

Lk A
Process 0—Voigt type process : E— u(m) and f(n) —a,
. . R Ljor LY Al§ orAlfc
Process 1—Static localisation process : c———f(n) and u(n)——s¢,
Lk or Lg‘e

A3 = A8
Process 2—Second kinematic localisation process: ¢———u(n) and f(n) — Y.

In each of these schemes, A stands for averaging operator, L for localisation, s for static
analysis, k for kinematic analysis, ¢ indicates whether the medium can be considered as
isotropic or anisotropic (the medium anisotropy is then described by a second-order devi-
atoric tensor e), finally the number 0, 1, 2 corresponds to the process that uses these
operators.

The derivation of all the operators used in the three processes is based on two relation-
ships:

e The well known averaging operator (Love, 1927):

L5 )

o‘i . =
L
VCOn[aCtS

e The balance between the macroscopic work ¢:¢ and the integral overall contact
direction n of microscopic work f(n) - u(n) :

a:s=§f'udQ. (6)

Process 0
¢ is infered from eqn (5) introducing the static variable f(n)

3
A5 6=— f@ndQ. ()

4TC Unit Sphere

L% is the simplest operator satisfying the balance of works
. 3
LY u(n) = —en. (8)
4

It is noticeable that this localisation operator corresponds to the classical one used in
Voigt’s homogenisation in continuum mechanics. Therefore Process 0 will also be called
Voigt type homogenisation.

Process 1

Resulting from the representation theorem (Spencer, 1987), the localisation operators
L5 and LY are isotropic functions of n, a, e, linear in ¢ and e, and odd in n. They also have
to be consistent with 43 whatever the stress tensor o is
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1 —
1 f(n) = uon—+ T'M(Snan—tr o)n 9

1-— 2
LY f(n) = pon+ ~2—#(5n¢m—tr a)n+tra|:(nen)n— gen] (10)

The two averaging operators 4% and A% are deduced from L} and LY considering the
balance of macroscopic and microscopic work in eqn (6) :

1—
A% s:3g |:,uu®n+u[5n®n—5]u'n]d9 (11)
Unit Sphere 2

Ak s=§; [uu@n—f—I;H[5n®n—5]u-n+5|:(nen)u'n—%(uen):l]dﬂ. (12)
Unit Sphere 2 5

Process 2

As for Process 1, the localisation operators are resulting from the application of the
general representation theorem (L% and L% are now isotropic functions of n, &, e, linear in
¢ and e, and odd in n) and they must verify 45 and A% whatever the strain tensor is:

LY u(n) =4?;{I:H—b(%—l)]sn%—b[nsn—%trs}n} (13)
[1 +b(3~y — 1)}sn+b[nan— Htrs}n
3 5 5

Lk u(n) = — . (14)
4n . |:2t1‘(8€)ll —20(neen)n+ 35(nen) (nen) :I

+ 6(eg)n— 6(ce)n— 1 5(nen)en — Str gen+ 1 S(nen)en

As the averaging operator A} already exists, the averaging operator A% has not to be
rebuilt, 4% is equal to that of Process 0

3

A3 a=—§> f®ndQ. (15)
471' Unit Sphere

As a conclusion of this section, it must be stressed that only three parameters have been
introduced to describe the distributions of contact forces and relative displacements of any
granular medium (the stress history is also taken into account): these parameters y, b, €
have some physical meanings which are proposed hereafter.

Variable x4 has been used to define L3, it has a great influence on the orientation of
contact forces. In particular for p = 0 f is colinear with n and for u = 1 f is colinear with
on. Of particular interest is the decomposition of the stress tensor ¢ and its deviatoric part
s in two parts 6", s and o', s” respectively, resulting from the normal and tangential
components of f. It can be easily shown (Sidoroff er al., 1992) that:

st = <1-§5ﬁ>s. (16)

The parameter u thus also represents the fraction of the deviatoric stress tensor supported
by the normal components of contact forces (from 2/5 for = 1 to 1 for p = 0).

b has appeared in addition to u in L%. It has been shown by Cambou (1993) that & is
linked to the local rotation of particles and to the possible creation and loss of contact in
the granular array. It must be stressed that the relative displacement u(n) has two different
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physical origins: the displacement of the centres of particles and the rotations of these
particles. 5 = 0 corresponds to the case of no possible rotation. As a maltter of fact, Process
0 1s a particular case of Process 2 with b = 0.

e is a deviatoric tensor characterising the internal anisotropy of the granular medium.
This internal anisotropy will lead to anisotropical distributions of local variables, for
instance :

e the contact distribution,
e the contact force distribution,
e the relative contact displacement distribution.

2. NON-LINEAR ELASTIC MODEL

To complete the homogenisation process, it is necessary to define the local contact
law. The Hertz—Mindlin model is considered, which can be written in an incremental form
(Mindlin and Deresiewicz, 1953) :

zy>) 2/3
. /3RG,\ o
Fn:<ﬁ—> (F)'"°U, (7

P - ( /3RGm>—f~ 2(1—vy) (Fn j_) ”Ul (18)

1—v, 2—v, ~ tan @

where G,, = shear modulus of the particle material, v,, = Poisson’s ratio of the particle
material. At this point it is possible to deduce the elastic constants of a granular medium
from the local contact law (G, v,,) and the internal variables of the medium defined in the
localisation and averaging operators (u. or x4 and b, e in the anisotropic case). Three
homogenisation processes have been developed.

Process 0

In addition to the local law Process 0 uses the static averaging and the kinematic
localisation operators 4% and LY. In this case there is no micromechanical parameter to
introduce. For an isotropic case, the analytical determination of the elastic constants is
possible because of the simple shape of some of these relations:

First
Py = - (19)
= 4n
with
3,
6, = 6,0, thecontactforcesare F,=——_ F =0. (20)
ND
As a consequence
¥, 3RG,\** (36, \'" 4nD
—=k,= L —63. il constant with respect ton 2D
u, I—v, ND 3

F V3IRG N 2(1—v,) (3a,\' 4nD ,
L=k = (=) —ag_ Rl constant withrespectton.  (22)
a, 1—v, 2—v, \ND 3

Should the medium be loaded incrementally with &, the variation of the contact force
distribution will be :
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f(n) = F(n) @ = ~—(F n+F)

ND ND
= T(ktﬂn ‘n+ka) = A [k.nén -n+k (én—nén - n)].

Using A5, the average stress increment resulting from the strain loading is:
4 g g

o'=i f®ndQ

47 Tunit Sphere

3 ND
— —— [k.nén*n+ k. [én—nén - n]] ® ndQ

47[ Unit Sphere 47t

3G, ND*\*? 1
=< ) —§ [nén*n+ o(én—nén-n)] ® ndQ
Unit Sphere

1—v, \/5 47
_ ( 3G, ND?

l—vmﬁ

G, ND*\*? (243 1—u
= (60)1/3< 8,+5,t1‘8——

1—vp, \/6) 5 Y 5

243 1 G, ND* \**
=E0< aﬁ +0,tré Sot) whereED:(h_> ol

> V6(1=vy)

With the classical notations for the elastic characteristics (i.e. Young’s modulus,
Poisson’s ratio, shear modulus and bulk modulus), the results of the first homogenisation
process are :

- s 1 e, X 2(1—va)
) (60)1,3[E(l—a)(é,-jtrs+2s,-j)+gs,-j} whereo = ——— Fy—

E-F 5— 4vm _ Vm _E 10—8v,,
053y, T 10—6v,” T "10—=5v,°

3JK=E,. (23)

Process 1

Process 1 is obtained with the static localisation and the kinematic averaging operators
L3 and A" in the isotropic case, LY and 4% in the anisotropic one. The micromechanical
parameter p has to be considered in this process and the global elastic characteristics are
for the isotropic case:

E_E 1—v, e 2(1—vy) (5= 10p) + 242 (5 —4v,,)

2(1—v )1 —p) + %(5_4%) 2(1—v,)(20—20p) + 44> (5— 4v,)

10(1—v,)
G —E, , 3K=E,. (24)
(1= v,)(25=30p) + 3> (5—4dv,,)

For an anisotropic medium and/or an anisotropic stress state a numerical determination is
necessary because distributions F,(n) and F,(n) are no longer constants, e has now a non-
zero value and the integral corresponding to the kinematic averaging operator cannot be
achieved analytically in the general case, only a numerical determination is possible and
will be analysed further on. Nevertheless, with the assumption of small anisotropy e, it is
possible to achieve the theoretical calculations. The elastic law can be written as
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( 2— 2-v,
a,,( - 2 21_:m)+5i,tr¢‘r<—10+20u—6u2—2yzﬁ)w

2——vm( 2 7
1—vm“ n

12 5
+e; tra35 20—-34u+6p° +

5 trétre? 24
. 1 ) +o;trétre 175 = >
7 20E, 12 ”_ ’
+;tres [5—13;L—|~6/12 . }
12 ,2- ,24 2—v,
—(de); w 1_ l,zsﬂl_vm
st 220 5 w00 227 e 2
i re"%5“1- gt oe ok, T dutre e g )
(25)
With an anisotropy e of the following form
e
e= —ef2 (26)
—e/2
the results of Process 1 become:
—éll— [ /l] ’12 /13 i —O..ll—
‘0;22 /2] E/22 E’23 O.-22
8' ’ 7’ El O'_
'33 _ 31 2 33 / '33 ) (27)
€33 44 033
813 /55 0'-13
Lén] L 6o Lo

As the coefficients Ej; are complex ones, their expressions are given in Appendix 1.

Process 2

In addition to the local law Process 2 uses the second kinematic and the static averaging
operators 4§ and L% in the isotropic case, 45 and L% if not. As for Processes 0 and 1, it is
easy to define analytically in the isotropic case the elastic constants of the granular medium :

3b 2b
5—dv,—3(1 —v, )b+ (5—4vm)?“ v +2(1 —vm)b—(5—4vm)Tu
E=E0 L] V= )
b 2b
53y, —(1 —vm)b+(5—4vm)?'u 10— 6v,,—2(1 —vm)b+(5—4vm)?u

6b
10— 8v,, — 6(1 — vy )b+ (5—4v,n) —glf

T , 3K=E,. (28)

G=FE

In the case of an anisotropic medium or anisotropic stress state, only numerical evaluation
of the elastic constants can be achieved for the same reasons as explained previously.
Nevertheless for small anisotropies, the elastic law can be written :
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(2 b 1—vy 3u
53,,{1+ . +32_vm[ b<1 5)}}
1 . 2bu 1—v, 3u
+5(S;jtr8{]—’5——22_vm [1—b<]— 5>:|}
6 3b T—vy 3
¢, = Eq +6,-jtrei:m{l—7b+’5&—Zﬁ%‘[l—b(l—?ﬂ)J}—@btreéeg
6 4b 1—v, 3
+trée,-,ﬁ{l—5'u—22_: [1—1;(1—?“)]}
121—v, 3u
29)
With the same anisotropy as in Process 1, the results of Process 2 become
[ou]  [En B En 1 [a]
G2z by, K, Ej 622
O'-33 . E31 E32 E33 é33 (30)
O3 Ey £33
dl} ESS él}
_d'lz_ L E66J _éIZJ

As the coefficients E,; are complex ones, their expressions are given in Appendix 2.

3. ANALYSIS OF THE RESULTS IN THE ISOTROPIC CASE

Homogenisation results for granular media have been proposed in the literature based
on the Voigt type localisation operator (Walton, 1987 ; Jenkins er al., 1989 ; Chang and
Misra, 1990). These approaches correspond to Process 0. In this section we will compare
the three possible approaches with experimental results.

El Hosri (1984) using a triaxial device has applied small cycles of deviatoric loadings
to samples submitted to different isotropic initial stresses. He supposed the mediuvm isotropic
and then can deduce from these tests the two isotropic elastic constants of the granular
medium. The initial void ratio is 0.875. The elastic characteristics of the glass are
G, = 3.0x 10" Pa and v,, = 0.2. The three processes (i.e. Voigt type homogenisation, static
localisation and second level of kinematic localisation) are compared in terms of Young’s
modulus and Poisson’s ratio on Figs 2a—f.

Figures 2a, b show that the Voigt type homogenisation gives moduli stronger than the
real ones and a totally unrealistic Poisson’s ratio. Nevertheless, the variation of each elastic
characteristic with the isotropic stress is relevant.

Figures 2c, d show that for the static localisation homogenisation the best results are
obtained with a value of u equal to approximately 0.0. This value is not relevant to that
found in numerical simulations (Mahboubi, 1995) : p = 0.7 gives a better description of the
contact force distribution.

In Figs 2e, f the results obtained with Process 2 are shown in the case of constant
values of u and for different values of 5. u is taken equal to the value previously mentioned
deduced from numerical simulations. The experimental results seem to be well explained
with b around 3.5,

In Figs 3a, b, the results corresponding to the best values of 4 and u are presented.
Poisson’s ratio is independent of the isotropic stress as for the experimental results and
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Young’s modulus varies as the n-power of the isotropic stress with n = 1/3 (n = 0.59 in
experimental results).

It has been shown in previous works (Cambou et al., 1994) that better results can be
obtained with a decreasing value of b in Process 2. This can be explained by the fact that
parameter b is related to the possibility of rotation and loss of contact of particles which is
decreasing when the isotropic stress is increased. For the sake of simplicity and for a better
understanding of the results in an anisotropic case (see Section 4.2), no variation of b has
been taken into account.

(a) — + — Experiment
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E 1200
z 1000
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Fig. 2. (a) Comparison between experimental results and Process 0 homogenised law—Young’s
modulus. (b) Comparison between experimental results and Process 0 homogenised law—Poisson’s
ratio. (Continued overleaf.)
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Fig. 2 (Continued). (¢) Comparison between experimental results and Process 1 homogenised law—Young’s
modulus. (d) Comparison between experimental results and Process 1 homogenised law—Poisson’s ratio.

4. ANALYSIS OF THE RESULTS IN ANISOTROPIC CASES

4.1. Stress anisotropy

All the previous results were established for an isotropic stress state assuming an

isotropic medium. An anisotropic stress state is now considered still assuming an isotropic
medium (i.e. e = 0). The elastic characteristics (i.. coefficients E; of the elasticity matrix
given in Section 2) cannot be derived analytically. A numerical calculation is needed to
compare the micromechanical approach with experimental data obtained during a triaxial
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Fig. 2 (Continued). (¢) Comparison between experimental results and Process 2 homogenised law—Young’s
modulus: u = 0.7. (f) Comparison between experimental results and Process 2 homogenised law—Poisson’s ratio :
uw=0.7

compression test on glass ball assembly (Agarwal and Ishibashi, 1992). The different elastic
characteristics are obtained from wave velocity measurements. The glass ball mixture (2
sizes with diameter of 0.215 mm and 0.256 mm) has an initial void ratio of 0.580. The initial
isotropy of the granular medium can be checked in this case. The three constants E, |, E,,
E;; are initially equal.

If we assume that y and b remain constant during the test, the description of measured
elastic coeflicients is good (Fig. 4). For small stress anisotropy, the assumption of isotropic
medium is relevant. Most of the elastic anisotropy is due to the stress anisotropy itself. But
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Fig. 3. (a) Comparison between experimental results and Process 2 homogenised law—Young’s
modulus: 4 = 0.7 = 3.8. (b) Comparison between experimental results and Process 2 homogenised
law—Poisson’s ratio: = 0.7 b = 3.8.

for great values of deviatoric stress, a structural anisotropy e is needed to explain the
experimental results.

4.2. Structural anisotropy

In this section a simple comparison with experimental results of isotropic compression
test on the same glass ball assembly previously mentioned with initial anisotropy is done
(Agarwal and Ishibashi, 1992). The initial anisotropy of material can easily be checked as
the two characteristics F,, and E,, are different. The medium anisotropy is here assumed
to be as in eqn (26) :
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—+—E,, exp —+—-E exp
—E, -—-—E,
—+ —E,, exp --+--E.. exp
200 — _ _Ezz ______ E66
22 66
700
T — — — = — — — -
S ~
2 500 —
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2 400 -
z 300
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=
g ooooonoioooo oo
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0 | | | | 1
0 10 20 30 40 50

Deviatoric stress (kPa)

Fig. 4. Comparison of experimental compression results and Process 2 homogenised law with x and
b constant: y = 0.7, b = 3.8.

e= —e/2
—ef2

This anisotropy can result if e > 0 (respectively, e < 0) from a compression (respectively,
extension) test in the 1-direction.

For constant values of g, e and b, the theoretical approach matches the experimental
results (Fig. 5). These results should be considered very carefully because of the difficulty

—E, - - —=E,
—+—E exp —+—FE, exp
— —B, - Ees
800 —+—E, exp --+--E_exp
700
g 600 -
€ 400 — =
= — =
g 300 -
kS —t
100 PRl e
0 1 | T T T 1 1

0 20 40 60 80 100 120 140
Isotropic stress (kPa)

Fig. 5. Comparison of the experimental isotropic compression results and Process 2 homogenised
law with u, b, e constant: y = 0.7, 5 = 4.78,e = 0.1.
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Fig. 6. Comparison of the numerical results (Cundall ez al., 1989) and Process 2 homogenised law
with p, b constant: p = 0.5, 5 = 3.0.

of measurement of the elastic characteristics of granular materials first and also because of
the existence of a dissipative behaviour of granular medium even for small loadings. Thus,
various authors (Luong, 1993) showed that for small load cycles, the dissipated work is
relatively small and negligable below the characteristic threshold, but that, on the contrary,
a large frictional energy has to be dissipated above the characteristic threshold because of
the instability of a great number of contacts. So, for strong anisotropy, experimental results
are not so reliable.

4.3. Stress and structural anisotropy

Usually, both anisotropies (stress and structure) have to be considered simultaneously.
In this part, a comparison is done with numerical simulations on TRUBAL (Cundall et al.,
1989). The elastic characteristics E,,, E,, and E;; [cf. eqn (30)] are determined during a
constant mean pressure triaxial test on a initially isotropic 432 sphere assembly. Point A
corresponds to the initial isotropic stress state. Point B is the maximum compression point
(compression in direction 1). Point C is the result of unloading from B to the isotropic
stress state and finally point D corresponds to the final state of an extension test conducted
from C.

Figure 6 shows the results of the numerical simulation and those of the homogenisation
approach. For the four points A, B, C and D, u is equal to 0.5 and 4 to 3.0. For point A,
the medium is supposed isotropic so e = 0. For point B, because of the development of a
structural anisotropy in direction of compression, e is now equal to 0.1. This value of e has
been defined from numerical simulations conducted by Mahboubi using the same numerical
program (Mahboubi, 1995). For point C, the anisotropy e decreases to 0.05. Finally, for
point D, the extension loading leads toe = —0.1.

Once more, the simulated values of E,,, E,, and E,; seem to follow quite well the
numerical results. As for experimental comparisons, the numerical results have to be
considered carefully because of the necessary simplified numerical scheme used in the DEM.

5. CONCLUSION

The results presented in this paper are obtained considering a local elastic non-linear
law. It seems that the description is good for either isotropic or anisotropic stress state in
the case of an isotropic medium. A few results have been given in the case of an initial
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structural anisotropy induced by fabric or loading history. Comparisons with experimental
and numerical results have shown the relevance of the micromechanical approach in
modelling the anisotropic elastic behaviour of granular materials.

This elastic part of strain is especially important when granular media such as soils are
submitted to vibrations or very small amplitude cycles. But as the non-reversible phenomena
are important, as soon as the strain is greater than 107, the present model has to be
extended considering local non-reversible contact laws. In particular, the chosen contact
law should be able to take into account the sliding between particles and the loss of contact.
As a consequence, evolution laws should be proposed for the micromechanical parameters
introduced, and especially for the anisotropy tensor e. These analyses have been recently
achieved and will be described in further papers.
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APPENDIX

The results presented in Appendices 1 and 2 are those of anisotropic medium loaded isotropically and
correspond to the application of Processes 1 and 2. The matrices Ej; and E; have been defined previously (see
Section 2).
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Keeping first-order terms in e and using the expression of the isotropic elastic characteristics £, & and v, the

anisotropic elastic constants become :
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Micromechanical modelling of anisotropic non-linear elasticity of granular medium
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With the first order term in ¢ and the elastic characteristics £, G and v, these elastic constants become :

JER— 6oE ) 3
B e T | [‘*b(“?“ﬂ}
(1= 27)(1 +v*) m
Eiso 1 —yiso 3eE. 1— 3
E22=E”:-(_“) 2900 )10 35h—but 55— | 1 —p{1-2F
(1*"2\"“0)(1-&-1"50) 875 2— 5
ooy oE 3
Ep=Ea=— 200 )5 35 11py '"[lfb(l—l
(172\’“0)(1-}-\/“0) 875 —Vm 5
Eiso Jis0 3 E
E, = E; = ! e (5— 706+ 10bp)
(1-2v%) (1 4v*) T
Favm By e 3B o ag a5t
32 (1_2vim)(]+v;so) 875 2—\;m 5
Eis° 6eLy 1—v, 3u
Fogm — 20 1-s(1-#
e S M ]
B 12ef, 1—v, 3u
Eo = E,, = ol
ss = Egq ™ 25 2—v, |:l b(l 5



